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ABSTRACT

Every nonsingular totally positive m-banded matrix is shown to be the

product of m totally positive one-banded matrices and, therefore, the limit

of strictly m—banded matrices. This result is then extended to (bi)infinite,

'nonsingular', totally positive matrices. In the process, such matrices are

shown to possess at least one diagonal whose principal sections are all :
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SIGNIFICANCE AND EXPLANATION

This report deals with certain technical questions regarding totally
positive matrices, i.e., matrices with all minors nonnegative. Such matrices
make their appearance in various areas of analysis. Particular emphasis here
is on totally positive matrices which are also banded (meaning that all
nonzero entries occur in just a few consecutive bands or diagonals) and
biinfinite.

Such matrices occur, for example, in the study of standard spline
approximation schemes such as spline interpolation at knots or least-squares
approximation by splines. Certain questions about such a matrix are much more
easily answered when it is known that the matrix is strictly banded. This
means that all the elements in the two outermost nontrivial bands of the
matrix are nonzero. The answers can then also be applied to a totally
positive matrix which is merely banded provided one knows that there are
strictly banded totally positive matrices arbitrarily close to the matrix of
interest. This useful fact is proved in this report by showing that a non-
singular totally positive matrix can be factored into certain bidiagonal

totally positive matrices, even when the matrices involved are biinfinite.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A FACTORIZATION OF TOTALLY POSITIVE BAND MATRICES

Carl de Boor and Allan Pinkus

1. Introduction. In thisg paper, we prove the result, needed in [1), that a totally
positive biinfinite band matrix is the limit of 'strictly banded' totally positive matrices
of the same band type. But the tool developed for the proof, viz., the factorization of
such matrices into ’'one-banded' totally positive matrices, is of independent and, perhaps,
greater interest.

We came to consider such factorizations because of the recent paper by Cavaretta,
Dahmen, Micchelli and Smith (3] in which such a factorization is derived for strictly
banded totally positive matrices. But we were unable to adapt their arquments, which
involve limits of ratios of entries in a certain matrix inverse, to our situation, and
ended up constructing the needed factors by the more familiar device of elimination
instead. The factorization is first established for finite matrices and is then extended to
biinfinite matrices by a limiting argument. For this, we found it necessary to first prove
tha‘. such a totally positive 'nonsingular’ matrix has at least one diagonal with the

property that all square finite sections which are principal for that diagonal are

nonsingular.

2, Bandedness. The r—th diagonal or band of a matrix A is, by definition, the
sequence [A(i,i+r)) « As in [2], we call a matrix A m—banded if all nonzero entries of
A can be found in at most m+1 consecutive bands. Explicitly, the matrix A is m-banded
if

for some £ , A{i+%,3j) # 0 implies 1 < j < i+m .
If both £ and m-2 are nonnegative, then the m+1 nontrivial bands include the ‘main

diagonal' or zeroth band, with £ bands to the left of it and r := m-% bands to the

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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right of it. In this situation, we will at times call such a matrix more explicitly

(%,r)=-banded.
We call a band matrix strictly banded if the leftmost and the rightmost nontrivial

band contains no zero entries. Among banded matrices, the strictly banded ones are

particularly easy to treat since they correspond to nondegenerate difference operators.

3. Total positivity. A matrix is said to be totally positive {or TP) in case all its

minors are nonnegative.

We use the abbreviation
i e o8 i
1 8 . 8 t
A[j1' 1 = (A(iu,Jv))u_1 ve1

.t'lj
t
for the sxt matrix which has its (u,v)=-entry equal to A(iu’jv) « Further, if I and g

are index sets, then
.4 oee ,is

I 1
AI,J * A[J] ) A[j1, ,jt]

with 11, Y is, and j1, cess jt the elements of I and J , respectively, in

increasing order. Occasionally, we will use the additional abbreviation
I
A{I] 1= A[I] .

Finally, replacing the square brackets by round brackets gets us from the matrix to its

determinant:
A( *°7 ) = et al 177 ] .

We will make repeated use of

Sylvester's determinant identity (SDI)e. If A(j) #0 and B is the matrix obtained

from A by

= Ay L e wen ke

B{1i,3) {j} ud

then
I I'v1I I
B(Jn) = AJlUJ)/A(J] o

The submatrix A, ; is called the pivot block since the identity is proved by
’

is the Schur complement of AI’J , i.e., the interesting part of what

is

observing that B

-2-




left in rows \I and columns \J after rows I have been used to eliminate variables

J from the other rows; see, e.g., Gantmacher (5;p.31] or Karlin (7;p.3] . In particular,

I'v1I

L}
I J] = |I| + rank B[i,] (for I'nI =@ =J'nJ).

Corollary 1. rank A

Corollary 2. B 1is again TP if A is.

Another result which may be proven by Sylvester's determinant identity (using

induction on |I|; see Gantmacher « Krein [6;p.108] or Karlin ([7;p.88}) is

Badamard's inequality. If A is TP and I = I'UI" with I'n1I" =g , then

A(I) < A(I')A(I™) .

4. Shadows. In this section, we prove an ancillary result concerning the existence of
a diagonal in a TP biinfinite matrix which could serve as the main diagonal in a triangular
factorization, i.e., a diagonal all of whose principal sections are nonsingular.

A zero entry in a TP matrix usually 'throws a shadow'. By this we mean that usually
all entries to the left and below it, or else all entries to the right and above it, are
also zero. More precisely, call the submatrix A[;:;z] i:?e left shadow of the entry
A(iy,j) and, correspondingly, call the submatrix A[j>jo] the right shadow of

A(ig,Jg). Then the following lemma is known.

Lesma. If A is TP and A(io,jo) = 0 , but neither A(-,jo) nor A(io,°) is zero,

then either the left or the right shadow of A(io,jo) is zero.

Proof. By assumption, A(io,j1) ¥ 0 for some j1 . If j1 < jo , then the right

shadow of A(io,jo) can be seen to be zero as follows. First, for any i < i, ,
i ,i

0
< = - , <
0 a( j1'ja) A1y, 3,)A01,30) 0
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o

and A(i;,34) ¥ 0 implies that &A(i,J5) =0 for all 4 < iy, « Hence there then exists i,

> io for which A(11.j0) ¥ 0 « But now, for any i ¢ 10, > j0 ¢
i ,i
1
o < a ) = - A4, AL, € 0
jolj 1°70

and Aliq.jg) # 0 implies that A(i,j) =0 .
Finally, if instead j1 > j0 ., then the left shadow of A(io,jo) is similarly seen to

be zero. |||

As an application for later use, note that a zero in the lower triangular part of an

invertible TP matrix necessarily throws a left shadow since all diagonal entries are

nonzero, by Hadamard's inequality.

More generally, for any section of A , i.e,, any submatrix AI,J of A made up of
congecutive rows and columns of A , we call the submatrix of A having Ay 5 as its
r
upper right corner the left shadow of AI,J . and, correspondingly, we call the submatrix

having AI,J as its lower left corner the right shadow of AI,J . Then we have the

following generalization of the lemma.

is a sinqular section of order n and rank

Proposition. 1f A is TP and Ara
n-1 , while both A[f] and A[;] are of full rank n , then either the left or the right

shadow of A has rank n-1 .
1,7

Remark. As in the case n=1 discussed earlier, we will describe this last situation

by saying that such a section AI,J 'throws a (left or right) shadow'.

’
Proof. By assumption, we can choose (i5,35) € IxJ so that A(I,) # 0, with I' :=

I\ (10} , I = J\[jo} « The assumptions imply that the Schur complement of Rpv g0 4 leeo,

the matrix B given by
r v L] L]
B(r,s) := A(ﬁai U;,)/A(g,) . all (r,s) ¢ 1I'x3" ,
is again TP (by Corollary 2 of SDI) and vanishes at (1o,jo) while (by Corollary 1 of SDI)

is zero. The lemma therefore implies that either the left

neither B(io,') nor B(*,3;)
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or the right shadow of B(io,jo) is zero, and Corollary 1 of SDI then implies that either

the left or the right shadow of AI,J has rank n-1 . |||

Corollary. If A is an infinite TP matrix, e.ge;, A € R”xu, then all rows and all

columns of A are linearly independent if and only if A(I) ¥ 0 for all finite I < N.

Proof. If A(I) = 0 for some finite I ¢ N, then Hadamard’'s Inequality implies the
existence of some n € N for which A(1,...,n) = 0 while A(1,¢ss,n-1) ¥ 0. The
Proposition then implies that either the first n rows or else the first n columns of

A are linearly dependent. |||

We now state and prove the corresponding result for a biinfinite TP matrix. This is
somewhat harder since it is not clear a priori which band is to play the role of main
diagonal.

We concentrate on principal sections for a band: A principal section for band r is
any submatrix of the form AI,I+r » with I an interval. In other words, such a principal
section for band r is (i) square, (ii) made up of consecutive rows and columns, and (iii)
has a piece of band r as its main diagonal. We call such a principal section minimally
singular if it is singular but contains no smaller principal section for the same band
which is also singular. Note that, by Hadamard's inequality, every principal section

containing a singular one for the same band is itself singular.

Theorem A. Let A be biinfinite TP and assume that not all minimally singular

sections of A throw their shadow in the same direction. Then, all rows and all columns

of A are linearly independent if and only if all principal sections for some band are

nonsingular, i.e.,

I
I+x

there exists r so that, for all intervals I , A( J#o.

DRy ————



Proof. The sufficiency of the condition is obvious. So, assume that all rows and all

columns of A are linearly independent. If every band r has a singular principal

section, then every band has a minimally singular one and, all rows and all columns being

linearly independent, each of these throws a shadow, by the proposition. By assumption, not '
all of these shadows go in the same direction, i.e., there exist bands r and 8 80 that

some principal section for r throws a shadow to the left while some principal section

for s throws a shadow to the right.

We may assume that r < s . For, if the left shadow is of rank L , say, then every
band q < r has a minimally singular principal section (of order < L+1) inside that
shadow, and each must throw its shadow to the left since otherwise the union of the two
shadows would contain a strip of width » L+1 and of rank < L, thus contradicting the
linear independence of rows (or columns) of A .

Further, since every band has a shadow throwing section, we may assume that s = r+1 .

More explicitly now, we assume that, for some r , there is L » 0 and i so that

i, eee 4 i+L

14, e LitreL is minimally singular with its left shadow of rank L while,

A_ = A[
r
k=R , se0 , k

KATFI-R, oee kTt is minimally singular with

for some R ? 0 and some Xk , Ar+1 = A[
its right shadow of rank R .
There are three cases, depending on the relative position of these two submatrices.

Case 1: k-i > max{L,R} . Then all columns j in A[l’ o 'k] with j < i+r are

i+r itr+l
¥ ¥
i + x x x x X
x
x
x
x
X X X X X X+*Kk
+ +
k+r+1=-R k+r+1

linear combinations of the L columns i+r+1, ..., i+r+l, while all columns j with
j > k¢¥r are linear combinations of the R columns k+r+1-R, ..., k+r , and this holds

even if , e«g., L = 0 since then all columns j with Jj € i+r are zero themselves.

since i 4+ r+1 € k + r+1 « R and { +r +L <k + r , all columns are linear combinations




iy -

g

of the k~i columns i+r+1, ..., k+r . We conclude that A[i' ot ’k] has only rank
k=i, a contradiction to the assumed linear independence of all rows.

Case 2: i+r+L - (k+r+1-R) » max{L,R} . This is treated analogously. It leads to
columns k+r+1~R, ..., i+r+L Dbeing dependent, again a contradiction.

This leaves

Case 3: max{k-i, i+L - (k+1-R)} < max{L,R} . In this case i~k < 1 + max{L,R} -
(L+R) = 1 - min{L,R} , and so

min{L,R} <€ k-i ¢ max{L,R} .

We claim that this contradicts the minimality of the two sections A, and A,,; chosen.
Assume without loss that L < R . Then, since L < k=i < R, the r-band section At lies

inside the (larger) (r+1)-band section A ...

i+r i+r+L
+ ¥
. . . . . . + k=R
. . . . . . . . . .
i+ ¢ x rx";": . o e o s »
©oxix_x) oo so1 9% :
i+L* * x x x * ©®©© - -
. . . . . [ + k
3 %
k+r+1-R k+r+1

By the minimality of A_,, , the L-section Al Lov e 'i+L-1] principal for band

i4r+1, +o. ,itr+lL
r+1 is nonsingular. In its Schur complement B , the section A, appears as a zero which,
by assumption, throws a left shadow. But this zero appears on the next-to-main diagonal of
the submatrix B, ., of B corresponding to A,y and this implies det B,y to be the
product of two of its proper complementary minors. But then, by the singularity of Al ¢

hence of B, ,, ., some proper principal section of A,,, must be singular, contradicting

the minimality of Ap,y 11

NI U SN o o T . a4y % = b e mcmms. et b o oo e
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The assumption that there ought to be shadows thrown in both directions cannot be

ommitted, as the following example shows. Let
1/¢(i-3)1 , i3j3
B(i,3j) := .
()} , i<j

Then B is TP and, with 11 € see is' j1 < oee ¢ js ,» we have
1’ s X
B(, ) > o0 iff i, 23, . all e

From B , construct A by deleting every other row. More explicitly,

A(i,j) := B(2i,3), all i,j .
Then A is again TP and biinfinite and its rows and columns are linearly independent. But
now every band r has singular principal sections; for example, A(i,i+r) = 0 for all

i<r.
5. Factorization of a finite band matrix.

Theorem B. A TP nonsingular ({,r)-banded nxn matrix A can be factored as

a = 1) s gty gt

with L'K)  a unit-diagonal (1,0)-banded TP, all % , D a diagonal TP, and U'K) a unit-

diagonal (0,1)-banded TP, all k .

Proof. We obtain the factorization by the standard device of elimination. In the
typical step, we have a nonsingular TP (£,r)-banded matrix A with zeros already in band

-2 in columns 1, ..., k-1 . From it, we obtain the matrix B by subtracting c¢ times

k
¥
X X X X
X X X X X L+k+r
0 x x x x x +
0 x X X x X
L+k » & x x x x x
X X X X X X

b




row &2+k-1 from row R+k . Thus B differs from A only in row £L+k and there only in
entries k, k+1,.e., L+k+r=1 because of the zeros in the other entries in row £+k-1, In
particular, B 1is again (£,r)-banded, with zercs in band -2 in columns 1,+..,k=%.

{ We now choose c 80 that also B(i+k,k) = 0 . If A(&+k,k) = 0 , then the choice c =
0 will do. Otherwise A(&+k,k) ¥ 0 and then necessarily also A(L+k-1,k) ¥ 0 (since
A(+k=1,k) = 0 would throw its shadow to the left because A 1is nonsingular, and

A{&+X,k) = 0 would follow). But then the positive number

c = RA(&+k,k)/A(L+k=1,k)

doea the job.

3 Note that B = CA , with C the identity matrix except for a =~-c in position

(2+k,4+k~1) ., Since the action of C is undone by adding ¢ times row AL+k-1 ¢to row
L+k , it follows that
A = EB
with E the identity matrix except for a ¢ in position (L+k,%4+k-1) .

In order to carry out these steps repeatedly, we need to know

Lemma. B 1is again TP,

Proof. Since B differs from A only in row £&+k , we only need to consider minors

of B which involve row £+k . Among these, we only need to consider those minors which do

not involve row &+k-~1 since the others retain their (nonnegative) value in going from

? A to B . Thus we must show that

a(;) > 0

whenever I and J are index sets of like cardinality and I contains £+k , but not
i+k=-1 . Let §
I' o= {d€X : 4 < R4k} , I" = {4eI : i > &4k} .
:f Then

' . B(I] - A(I) - CA(I',£+§-1,I")




T

&

Py

R

and there is nothing to prove unless, as we now assume,
' R4k [ ]
A[I Rtk=-1,I ) o .
J
which implies, by Hadamard's inequality, that every principal minor of the corresponding

submatrix is strictly positive. We must then show that

QAT AT oAttt (- )

For this, let, correspondingly,
g = J'y {jluva"
with J' the |I'| smallest, and J" the |I"| largest, elements of J .

We claim that

I',%4+k-1,1I" L+k,I" L+4k=-1,1"
A(;)/A( +J ) > A( j ’gn)/h( +j ,J") *

This inequality follows by |I'|-fold application of the inequality

1,0,8=1,8+1, ., t41 2,.,8=1,8+1,.,t+1 i
" ) e 1
C("" 8 ,s+2,.,t+1) C(z,., s ,s+2,.,t+1) }

1o o « o5 t 2,¢ o « e, t

valid for any TP matrix C , because of the identity

1,¢,8-1,8+1,.,t+1 2,00 8 ,8+2,4,t+1
SO I CLRAND

1 oy v v TR

1,. +2, ¢, t+1 2,0,8=1,8+1,.,t+1
C( ses B8 8%2,., . )c(z:.'s. ls. l.: . )

Toe o .

2,o-o,t+1) C(1,-,S-1,s+2,.,t+1)

= c(1,..., t 2,0 ¢+« e t

valid for such matrices. This identity is proved, e.g., in Karlin [7;p.8] . It may also be
proven by SDI applied to the (t+1)x(t+1) matrix obtained by adjoining to the first t+1 i
rows and t columns of C the additional column (1,0,...,0)T ., and taking

ol

1,.,s-1,s+2,.,t+1]
2,¢ o ¢« o4 t

as the pivot blocke.

Unfortunately, the corresponding argument involving dropping of the last few rows and

columns reverses the sign in (*) and so provides the irrelevant inequality 1

L4k, 1" L4k~1,1" 2+k 24+k=1
A( ; ,Jn)/A( +j 'Jn) < A( ; ]/A( 3 ) .

-10-
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Instead, we observe next that

!,-H(,I")/ (2'4‘1(-1 1" )

L4k, L2+k=-1,1"
G VN Caat o BT Gt VA gl

k ,J" k ,J"

This follows from the fact that

R4k, Iy, (A+k~1,I" -
AHRINACEIT) a4 (M)

with the matrix C given by
IN
Clu,v) = A(::J') . all p,v,
hence TP (by SDI), and therefore the ratio is monotone nondecreasing in j for j to the

left of J" , while the strict positivity of

I*,8+k=-1,1"
. a( o )
implies, via Hadamard's inequality, that A(2+¥-1) >0, and so0 k € j (recall that
A(£+t-1) =0 for VvV <k),

This leaves us, finally, with the task of showing that

24k, I" L4k=1,1" 2+k L2+k-1
AR I AT s AR At

But that is now obvious since A(i,k) = 0 for i > &+k , hence
L+k "
a(*¥)a(20)

L4k, 1" £+k 1,1"
AT = e

(£+k) (£+k 1)

/A

We conclude that a nonsingular (£,r)-banded TP matrix A can be factored as
A = E(1)_....E(n-l) B
with B again TP but only (f-1,r)-banded , while, for each k , E(k) is the identity
matrix except for some nonnegative Sk in position (&+k,%+k~1) . But then
AR P
is a (1,0)-diagonal matrix with unit diagonal and the nonnegative number c, in position

(24k,8+k=1) , k=1,...,n~% , and zero everywhere else. Consequently, L(z) is (1,0)=-banded

and TP.

We conclude that a nonsingular (&,r)-banded TP matrix A can be factored as

A ARLISOUPT AL

-11-
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;3;
.
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L ettt i [T

with B a (0,r)-banded TP matrix and each LX) aTp (1,0)-banded matrix with unit
diagonal. Applying this last statement to BT and transposing the result finishes the

proof of Theorem A. |||
6. Factorization of a (bi)infinite band matrix.

Theorem C. A TP (bi)infinite m-banded matrix A whose rows and columns are linearly

independent can_be factored as

A = Y L g™ p

with each R(k) a TP one~banded matrix with maximum entry in each column equal to 1 and

D a TP diagonal matrix with 0 < D(j,3) ¢ max A(i,j), all j .

Proof. If A 1is biinfinite, then we know from Theorem A that all principal sections
for some band of A are nonsingular. Assume without loss of generality that the zeroth

band is such a distinguished band and that A is, more explicitly, (£,r)~banded. Then we

know that, for all n,
A t= Al-n, «ee, n]

n
is nonsingular. If A is only infinite, A ¢ R”x“ say, then we know from the Corollary to

the Proposition in Section 4 that, for all n,

At = Af{1,¢6.,n]

is nonsingular.
In either case, Theorem B assures us that A, has a factorization
£ 1
o= B M L,
n n n n n n
with L;k) unit-diagonal (1,0)-~banded TP, U;k) unit-diagonal (0,1)~banded TP, and Dn

diagonal TP. We intend to let n go to infinity and therefore must deal with the fact that

these factors may not be bounded independently of n .

-12~
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For this, define one-banded matrices s(-l), coe, s(r) as follows. Starting with

(-2) (-2) (=1)

| M := 1, define S s eee, S successively by
! s°K . “(-k)L;k)(H(-k+1))-1
! » with M{™X*1)  ¢he ajagonal matrix having max 1(M(-k)L:‘k))(1, 3) in its j-th diagonal
position. This number cannot be zero (by induction on k ) since H(-l’ = 1 and L;k) is
3 unit-diagonal. It follows that each s'”®) is a (1,0)-banded TP matrix with maximum
i entry 1 in each column, and
. L;!) .. L(;) - s(-l) s s(-1)H(0)
; . Now continue the process, starting with M(1) = M(O)Dn , getting successively 5(1), coey )
str) by
s o y(RIylk( Ort)y=1

n

(k)u(k)]
n

with ulk+1) the diagonal matrix having maxi[n (1,3) in its j-th position.

We arrive at the factorization

T LI LA U L L P AL L P
n n n n
(k)

with each Rn one-banded TP and miaximum entry 1 in each column, and E, a diagonal TP 4

matrix. We claim that
0 < En(j.j) < max A{i,j) , all j .
i

We know that

(1)

(m)
n JE_(3 ,3)

A(i,]) = 2 co e E R n (jri'jn n m

. (2)
(1:]1) R, (31.j2) ess R
3, 3

! with all summands nonnegative., Further, for at least one choice of i , one of the summanda

is just E_(3,)) since, starting with Jjp = 3 . we can pick 3,4, Jpmps oser g =t i in

(k)

sequence so that Rn (jk_1,jk) = 1 , But then A(jo,j) b sn(j,j) .

We can now let n go to infinity through a subsequence of N in such a way that each
of the matrices R;k) converges entrywise to some (bi)infinite matrix rix) , necessarily
one-banded TP with maximum entry 1 in each column, and E, likewise converges to some

diagonal matrix D satisfying 0 <€ D(j,3) < maxih(i,j) » all 3 , while

A = gD . g™ p,




But then 0 < D{j,j) ., all j , since otherwise A{(°*,j) = 0 , contradicting the linear

independence of the columns of A . |||

Corollary. Let A be a (bi)infinite TP m~banded matrix whose rows and columns are .

linearly independent. Then A is the limit of strictly m~banded (bi)infinite TP matrices,

and this limit is uniforr (i.e., in norm) if A is bounded.

Proof. Replace each zero entry in the two interesting bands of R(k) above by

: € > 0 to obtain the strictly one-banded TP matrix Rék) , all k . Then
A= &Y L™
€ € €

is strictly m—-banded TP (as a product of strictly banded TP matrices} and converges
entrywise to A as € —* 0 . Since the entries of R{X)  are boundea by 1 while those

of D are bounded by Ial_, this convergence is obviously uniform in case IAl_ < = 1

Remark. The assumption that the rows and columns of A are linearly independent is
not bothersome in the intended use of this corollary in [?) since there A is even
boundedly invertible. But it would be nice to know whether this assumption is necessary. We .
note that Metelmann (8] has obtained strictly one-banded TP factorizations for finite
strictly (£,r)-banded TP matrices and that Cryer [4] has obtained one-banded TP
factorizations for arbitrary finite TP matrices. But, the procedure given by Cryer may

produce more than m 1-banded factors unless the matrix is strictly mbanded.
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